解答:
1、42分钟=0.7小时
∵汽车故障点距机场15Km,每次只能送5人,汽车平均速度60Km/h
∴(1)小汽车送走第一批人后,第二批人在原地等待汽车返回接送;
则小汽车送第一批人到机场所用时间=15÷60=0.25 小时;
∴小汽车返回接第二批人再到机场所用时间=15×2÷60=0.5 小时;
∴共用时间=0.25+0.5=0.75 小时 > 0.7小时
故不能使8名球迷在规定时间内全部赶到机场。
∴(2)小汽车送走第一批人的同时,第二批人以5km/h的平均速度往机场方向步行,待途中遇返回的汽车时再上车前行.
则小汽车送第一批人到机场所用时间=15÷60=0.25 小时;
∴此时第二批人距机场距离=15-5×0.25=13.75 km;
∴小汽车返回与第二批人相遇所用时间=13.75÷(60+5)=11/52 小时;
∴此时第二批人距机场距离=13.75-5×11/52=165/13 km;
∴小汽车接上第二批人后再到机场所用时间=165/13÷60=11/52 小时;
共用时间=0.25+11/52+11/52=35/52 小时 < 0.7小时
故能使8名球迷在规定时间内全部赶到机场。
因此,只有第二种方法才能使8名球迷在规定时间内全部赶到机场。
2、(1)∵两辆列车相向行驶,从相遇到全部错开(两车头相遇到两车尾离开)需9秒
甲乙2列火车长分别为144米和180米
∴两辆列车行驶的路程和=144+180=324 米
∴两辆列车速度和=324÷9=36 米/秒
∵甲车比乙车每秒钟多行4米
∴甲车速度=(36+4)÷2=20 米/秒
乙车速度=(36-4)÷2=16 米/秒
(2)∵若同向而行,甲车的车头从乙车的车尾追及到甲车全部超出乙车
∴此时相当与乙车静止不动,甲车以 4米/秒的速度行走了一个甲、乙车的长度和
∴所用时间=(144+180)÷4=81秒
3、设甲的速度为 X千米/小时。
45分钟=0.75小时
∵A.B两地相距25.5千米,甲到达B地停留45分钟(乙尚未到达B地),甲车速度是乙车速度的3倍还多1千米
然后从B地返回A地,在途中遇见乙,这时距他们出发时间为3小时
∴甲行走的时间=3-0.75=2.25小时;
乙的速度为 (X-1)/3 千米/小时
甲、乙相遇时所走的路程和=2倍的 A、B两地距离
∴2.25X+(X-1)/3×3=2×25.5=51
∴X=16 千米/小时
∴(X-1)/3=(16-1)/3=5 千米/小时
故甲的速度为 16千米/小时,乙的速度为 5千米/小时。