解一:当a>1时,
|loga(1-x)|=-loga(1-x),|loga(1+x)|=loga(1+x),
|loga(1-x)|-|loga(1+x)|=-[loga(1-x)+loga(1+x)]=-loga(1-x2).
∵a>1,0<1-x2<1,∴-loga(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|.
当0<a<1时,
|loga(1-x)|=loga(1-x),|loga(1+x)|=-loga(1+x),
|loga(1-x)|-|loga(1+x)|=loga(1-x2).
∵0<a<1,0<1-x2<1,∴loga(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|.
因此当0<x<1,a>0,a≠1时,总有|loga(1-x)|>|loga(1+x)|.
解二:∵
=||loga(1?x)| |loga(1+x)|
|=|log1+x(1?x)|,
loga(1?x)
loga(1+x)
∵1+x>1,0<1-x<1,
原式=-log1+x(1?x)=log1+x
=log1+x1 1?x
=1?log1+x(1?x2)1+x 1?x2
∵1+x>1,0<1-x2<1,log1+x(1-x2)<0
∴原式>1,即
>1,|loga(1?x)| |loga(1+x)|
∴|loga(1-x)|>|loga(1+x)|.