证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB= 1 2 ∠BAD,∠FCD= 1 2 ∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中 ∠B=∠D AB=CD ∠EAB=∠FCD ∴△ABE≌△CDF,∴BE=DF.∵AD=BC∴AF=EC.