问下这个高数题,求积分的

2025-04-26 05:41:30
推荐回答(1个)
回答1:

令u=tan(x/2),则sinx=2u/(1+u^2),dx=2/(1+u^2)du
原式=∫1/[3+2u/(1+u^2)]*2du/(1+u^2)
=∫2du/(3u^2+2u+3)
=(2/3)*∫du/[(u+1/3)^2+8/9]
=(2/3)*(3/2√2)*arctan[(3u+1)/2√2]+C
=(1/√2)*arctan[(3/2√2)*tan(x/2)+1/2√2]+C,其中C是任意常数