求过程,答案是左上角,定积分,谢谢大神

2025-04-25 04:53:31
推荐回答(2个)
回答1:

=1/(csc²x十sin²x)dx
sin²x=(1-cos2x)/2
代入
=1/[2/(1-cos2x)十 (1-cos2x)/2 ]dx
设t=tanx,x=arctant,dx=dt/(1十t²)
cos2x=cos²x-sin²x
=( cos²x-sin²x )/( cos²x十sin²x )
=(1-tan²x)/(1十tan²x)
=(1-t²)/(1十t²)

回答2:

∫1-1/(1+sin²x)dx
设tanx=t,dx=dt/(1+t²)代入
=x-∫dt/(1+2t²)
=x-(1/√2)arctan√2t+C
=x-(1/√2)arctan(√2tant)+C
带入积分区间
=π/2-π/√2
=π/2(1-/√2)