设u=xy,则du=ydx+xdy,于是xdy=du-ydx,原方程变为
(sinu+ucosu)dx+cosu(xdu-udx)=0,
等式两边除以cosu,得(tanu+u)dx+xdu-udx=0,
1/tanudu=-1/xdx,
两边积分得ln|sinu|=-ln|x|+c
取指数得到xsinu=c1(c1为常数)
即xsin(xy)=c1
设u=xy,则du=ydx+xdy,于是xdy=du-ydx,原方程变为
(sinu+ucosu)dx+cosu(xdu-udx)=0,
(sinu+ucosu-u)dx=-xcosudu,
dx/x=-cosudu/(sinu+ucosu-u),
积分得ln|x|=∫-cosudu/(sinu+ucosu-u)。
xsin(xy)=c