已知f(x)=x-1⼀x+1,则f(x)+f(1⼀x)=

f(x)=(x-1)⼀(x+1)
2025-04-25 20:22:58
推荐回答(2个)
回答1:

f(1/x)=(x+1)/(x-1)
f(x)+f(1/x)=[(x-1)/(x+1)]+[(x+1)/(x-1)]
通分 ={[(x-1)^2][(x+1)^2]}/[(x-1)(x+1)]
=2(x^2+1)/[(x+1)(x-1)]
=2(x^2+1)/(x^2-1)

回答2:

f(x)=x-1/x+1
f(1/x)=1/x-x+1
f(x)+f(1/x)=2