如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比

2025-02-26 19:59:51
推荐回答(1个)
回答1:

设CE=x,S△BEF=a,
∵CE=x,BE:CE=2:1,
∴BE=2x,AD=BC=CD=AD=3x;
∵BC∥AD∴∠EBF=∠ADF,
又∵∠BFE=∠DFA;
∴△EBF∽△ADF
∴S△BEF:S△ADF=(
BE
AD
2=(
2x
3x
2=
4
9
,那么S△ADF=
9
4
a.
∵S△BCD-S△BEF=S四边形EFDC=S正方形ABCD-S△ABE-S△ADF
9
2
x2-a=9x2-
1
2
×3x?2x-
9
4
a,
化简可求出x2=
5
6
a;
∴S△AFD:S四边形DEFC=
9
4
a:(
9
2
x2-a)=
9
4
a:
11
4
a=9:11.
故选D.