f(x)=(1+tanx)cosx=cosx+sinx=√2((√2/2)cosx+(√2/2)sinx)=√2sin(x+π/4)f(x)在[0,π/4]内增,在[π/4,π/2]内减因此最大值为:当x=π/4时,f(π/4)=√2最小值为:当x=0时,f(0)=√2/2
f(x)=Cosx+Sinx=根号2Sin(x+π/4)最大值与最小值为正负根号2
用三角恒等变换