aX1^2+bX1+c+aX2^2+bX2+c
=a(X1^2+X2^2)+b(X1+X2)+2c
=a(X1^2+2X1X2+X2^2)+b(X1+X2)+2c-2aX1X2
=a(X1+X2)^2+b(X1+X2)+2c-2aX1X2
代入
=a(-(b/a))^2+b(-b/a)+2c-2a(c/a)=0
即aX1^2+bX1+c+aX2^2+bX2+c=0
a(x1+b/2a)^2+c-b^2/4a+a(x2+b/2a)^2+c-b^2/4a=0
因为a(x1+b/2a)^2+c-b^2/4a>=0
a(x2+b/2a)^2+c-b^2/4a>=0
所以a(x1+b/2a)^2+c-b^2/4a=0即aX1^2+bX1+c=0
a(x2+b/2a)^2+c-b^2/4a=0即aX2^2+bX1+c=0
X1,X2就是原方程的两个解
由X1+X2=-(b/a),X1X2=c/a
消去X1得
a(X2)^2+b(X2)+c=0;
则X2是原方程的解
同理可证X2