如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)

2025-05-04 19:08:36
推荐回答(1个)
回答1:

(1)证明:连接OC,如图,
∵OD⊥BC,
∴CD=BD,
∴OE为BC的垂直平分线,
∴EB=EC,
∴∠EBC=∠ECB,
∵OB=OC,
∴∠2=∠1,
∴∠2+∠EBC=∠1+∠ECB,即∠OBE=∠OCE,
∵CE为⊙O的切线,
∴OC⊥CE,
∴∠OCE=90°,
∴∠OBE=90°,
∴OB⊥BE,
∴BE与⊙O相切;
(2)解:设⊙O的半径为R,则OD=R-DF=R-2,OB=R,
在Rt△OBD中,BD=

1
2
BC=2
3

∵OD2+BD2=OB2
∴(R-2)2+(2
3
2=R2,解得R=4,
∴OD=2,OB=4,
∴∠OBD=30°,
∴∠BOD=60°,
在Rt△OBE中,BE=
3
OB=4
3

∴S阴影=S四边形OBEC-S扇形OBC
=2×
1
2
×4×4
3
-
120?π?42
360

=16
3
-
16π
3