设g(x)=exf(x)-ex,(x∈R),则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵exf(x)>ex+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.