定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的

2024-12-05 05:18:27
推荐回答(1个)
回答1:

设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+3,
∴g(x)>3,
又∵g(0)═e0f(0)-e0=4-1=3,
∴g(x)>g(0),
∴x>0
故选:A.