LZ的这个问题本身问得就不对。首先系统欠阻尼是指闭环函数欠阻尼吧。根轨迹是K从0到无穷,闭环极点的变化轨迹。闭环的阻尼本身就在随着K变化,也就是说,根轨迹上任何一点对应的系统阻尼比都不一样。随着K的变化,系统完全可以从过阻尼变到欠阻尼,或者反过来。要问的话应该是“欠阻尼时,闭环极点在什么位置”。如果是这个意思的话,欠阻尼时,闭环极点不在实轴上,也就是闭环极点虚部不为零,这时系统响应振荡收敛。过阻尼的时候,闭环极点在实轴上,这时系统响应单调收敛,不振荡。原因是拉普拉斯变换和特征根有关,振荡的频率一般与根的虚部有关,虚部不为0,频率不为0,就有振荡,虚部为0,频率为0,不振荡,根轨迹离开实轴的那个K被称为临界增益,意思就是K大于这个值的时候,系统响应从不振荡变到振荡。
具有两个对称的复数根
你这问题问得太大了,而且本事就有问题