解法1y=3x-2x^2
=-2x^2+3x
=-2x^2+3x-2(3/4)^2+2(3/4)^2
=-2(x-3/4)^2+9/8
由0<x<3/2
知当x=3/4时,y有最大值9/8,
法2 y=3x-2x^2
=x(3-2x)
=2x(3/2-x)
≤2×[(x+(3/2-x))/2]^2
=2×9/16
=9/8
故当x=3/4时,y有最大值9/8,
(1)
0
故依均值不等式得:
y=3x-2x^2
=(1/2)·2x·(3-2x)
≤(1/2)[(2x+3-2x)/2]^2
=9/8.
∴2x=3-2x,即x=3/4时,
所求最大值为:9/8.
(2)
x>-1,则x+1>0,
∴x+1/(x+1)+3
=(x+1)+1(x+1)+2
≥2√[(x+1)·1/(x+1)]+2
=4.
∴x+1=1/(x+1),即x=0时,
所求最大值为:log<1/2>(4)=-2。