二重积分的计算方法
化为二次积分。
∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
扩展资料:
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
参考资料来源:百度百科-二重积分
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域
,并以
表示第
个子域的面积。在
上任取一点
作和
。如果当各个子域的直径中的最大值
趋于零时,此和式的极限存在,且该极限值与区域D的分法及
的取法无关,则称此极限为函数
在区域
上的二重积分,记为
,即
。
这时,称
在
上可积,其中
称被积函数,
称为被积表达式,
称为面积元素,
称为积分区域,
称为二重积分号。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
化累次积分
∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2