角速度是物体在单位时间内转过的角度;
线速度是物体在单位时间内经过的弧长。
一、线速度
简介
圆周运动的快慢可以用物体通过的弧长与所用时间的比值来度量。若物体由M向N运动,某时刻t经过A点。为了描述经过A点附近时运动的快慢,可以从此刻开始,取一段很短的时间△t,物体在这段时间内由A运动到B,通过的弧长为△L。比值△L/△t反映了物体运动的快慢,叫做线速度,用v表示,即v=△L/△t。
线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。
注意,当△t足够小时,圆弧AB几乎成了直线,AB弧的长度与AB线段的长度几乎没有差别,此时,△l也就是物体由A到B的位移。因此,这里的v其实就是 直线运动中的 瞬时速度,不过如今用来描述圆周运动而已。
线速度是矢量,有大小和方向,做圆周运动的物体,它的线速度方向时刻改变,并始终指向该点的切线方向。
2.相关公式:
在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的值。即v=S/△t,也是v=2πr/T,在 匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ω*r
v=ωr=2πrf=2πnr=2πr/T
当运动质点做圆周运动的同时也做另一种平动时,例如汽车车轮上的某一定点,此时该质点的线速度为做圆周运动的线速度(w*r)与平动运动的速度(v')的矢量之和:v=w*r+v'
v=Δl/Δt
二、角速度
简介:
一个以弧度为单位的圆(一个圆周为2π,即:360度=2π),在单位时间内所走的弧度即为角速度。公式为:ω=Ч/t(Ч为所走过弧度,t为时间)ω的单位为: 弧度每秒 。
2.特性:
伪矢量 性:角速度是在 物理学中描述物体转动时在单位时间内转过 角度以及转动方向的矢量(更准确地说,是 伪矢量)。
角速度的矢量性: v= ω× r,其中,×表示矢量相乘(叉乘),方向由右手螺旋定则确定, r为 矢径,方向由圆心向外。