证明:∵(n-1)(n-2)(n-3)(n-4)+1
=((n-1)(n-4))*((n-2)(n-3))+1
=(n^2-5n+4)(n^2-5n+6)+1
=(n^2-5n+4)^2+2(n^2-5n+4)+1(这里把n^2-5n+4看成一个整体)
=(n^2-5n+4+1)^2
∴(n-1)(n-2)(n-3)(n-4)+1是一个整数的平方
望采纳!有问题请追问!
(n-1)(n-4)=n^2-5n+4
(n-2)(n-3)=n^2-5n+6
(n-1)(n-4)(n-2)(n-3)=(n^2-5n+4)(n^2-5n+6)=(n^2-5n+5)^2-1
所以
(n-1)(n-2)(n-3)(n-4)+1
=
(n-1)(n-4)(n-2)(n-3)+1
=
(n^2-5n+5)^2
希望对你有帮助,望采纳,谢谢~