(1)∵∠B=60°
∴ ∠ACB+∠CAB=180°-∠B=120°
∵AD,CE分别是∠BAC,∠BCA的平分线
∴∠CAF=½∠ CAB ∠ACF=½∠ACB
∴∠CAF+∠ACF=½(∠ CAB +∠ACB)=60°
∴∠AFE=∠CAF+∠ACF=60°
(2) AE,AC与CD之间的数量关系是AE+CD=AC
证明:在AC上截取AG=AE,连接FG
∵ ∠FAG=∠FAE AF=AF
∴△AFG ≌△AFE
∴∠AFG=∠AFE=60°
∵ ∠AFC=180°-∠AFE=120°
∴ ∠CFG=∠AFC-∠AFG=60°
∵∠CFD=∠AFE=60°
∴∠CFG=∠CFD
∵ ∠FCG=∠FCD CF=CF
∴△CFG ≌△CFD
∴CG=CD
∵AG+CG=AC
∴AC+CD=AC