解:(1)猜想x+
m
x
=c+
m
c
(m≠0)的解是x1=c,x2=
m
c
.
验证:当x=c时,方程左边=c+
m
c
,方程右边=c+
m
c
,
∴方程成立;
当x=
m
c
时,方程左边=
m
c
+c,方程右边=c+
m
c
,
∴方程成立;
∴x+
m
x
=c+
m
c
(m≠0)的解是x1=c,x2=
m
c
;
(2)由x+
2
x-1
=a+
2
a-1
得x-1+
2
x-1
=a-1+
2
a-1
,
∴x-1=a-1,x-1=
2
a-1
,
∴x1=a,x2=
a+1
a-1
.
(1)原方程化为:x^2-(c+m/c)x+m=0(x不等于0)
x=(c+m/c+√(c^2+m^2/c^2+2m-4m))/2或x=(c+m/c-√(c^2+m^2/c^2+2m-4m))/2
得x1=(c+m/c+c-m/c)/2=c,x2=(c+m/c-c+m/c)/2=m/c
(2)原方程化为:x^2-(a+2/a)x+2=0(x不等于0)
同理得x1=a,x2=2/a